The Statistics of Derangement—A Survey

J. Gillis ${ }^{1}$

Received July 14, 1989

Abstract

Given a finite set X of elements, divided into disjoint subsets, we define a derangement of X as a permutation which leaves none of the elements in their original subsets. The probability of a random permutation being a derangement is discussed, particularly its asymptotic value as the cardinality of X and the number of subsets tend, under certain conditions, to infinity. Finally, the problem is extended to studying the number of elements which are transferred by a general permutation to a subset other than their initial one.

KEY WORDS: Combinatorial analysis; derangements; Laguerre polynomials.

Suppose that $S_{1}, S_{2}, \ldots, S_{k}$ are mutually exclusive finite sets of elements and $X=\bigcup_{i=1}^{k} S_{i}$. A derangement of X is a permutation of its elements in which no element is left in its original set. If n_{i} denotes the number of elements in $S_{i},(1 \leqslant i \leqslant k)$, we define $D\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ as the total number of possible derangements of X. The probability that a random permutation is in fact a derangement is then given by

$$
P\left(n_{1}, n_{2}, \ldots, n_{k}\right)=D\left(n_{1}, n_{2}, \ldots, n_{k}\right) /\left(\sum_{i} n_{i}\right)!
$$

The starting point for the derivation of most of the results given below is the formula ${ }^{(1,3)}$

$$
\begin{equation*}
D\left(n_{1}, n_{2}, \ldots, n_{k}\right)=(-1)^{\sum n_{i}} \int_{0}^{\infty}\left\{\prod_{i=1}^{k} L_{n_{i}}(x)\right\} e^{-x} d x \tag{1}
\end{equation*}
$$

[^0]where $L_{n}(x)$ is the Laguerre polynomial whose expression is
$$
L_{n}(x)=\sum_{r=0}^{n}(-1)^{r}\binom{n}{r} \frac{x^{r}}{r!}
$$

It follows that

$$
\begin{equation*}
P\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\left[(-1)^{\Sigma_{i}^{k}=1 n_{i}} /\left(\sum_{i=1}^{k} n_{i}\right)!\right] \int_{0}^{\infty}\left\{\prod_{i=1}^{k} L_{n_{i}}(x)\right\} e^{-x} d x \tag{2}
\end{equation*}
$$

In the special case $n_{1}=n_{2}=\cdots-n_{k}=n$, it will be more convenient to use the simpler notation $P_{k}(n), D_{k}(n)$. The explicit formula (2) can be exploited to prove for the function $P\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ a variety of inequalities, recurrence relations, and asymptotic estimates, not all of which seem to be derivable directly from combinatorial considerations.

The trivial case of $P_{k}(1)$ is traditionally modeled by the problem of the secretary who typed k letters, with an appropriate envelope for each, but then absentmindedly put letters into envelopes simply at random. The probability that none of the letters reaches its proper destination is given by $P_{k}(1)$. It is easily proved by an inclusion-exclusion argument that

$$
\begin{equation*}
P_{k}(1)=\sum_{r=0}^{k}(-1)^{r} / r!=e^{-1}+O\left(\frac{1}{(k+1)!}\right) \tag{3}
\end{equation*}
$$

This result can also be obtained directly from (2) by noting that $L_{1}(x)=1-x$.

A less trivial problem arises if each of the k letters consists of n pages and the secretary now shuffles the entire pack of $n k$ pages before putting a random n pages into each of the k envelopes. What is now the probability that not a simple page is correctly addressed? From (2) we have

$$
\begin{equation*}
P_{k}(n)=\frac{(-1)^{n k}}{(n k)!} \int_{0}^{\infty}\left\{L_{n}(x)\right\}^{k} e^{-x} d x \tag{4}
\end{equation*}
$$

For large k, the integral can be estimated by the Laplace method and we obtain

$$
\begin{equation*}
P_{k}(n)=e^{-n}+O\left(k^{-1}\right) \tag{5}
\end{equation*}
$$

It follows incidentally, from (3) and (5), that for large k,

$$
\begin{equation*}
P_{k}(n) \sim\left\{P_{k}(1)\right\}^{n}+O(1 / k) \tag{6}
\end{equation*}
$$

This estimate has an obvious combinatorial interpretation, but the direct combinatorial proof is far from easy. We now come to a further generalization. Suppose that there are sets of r different sizes, $n_{1}, n_{2}, \ldots, n_{r}$, (say) and k sets of each size. The probability of a derangement now becomes

$$
\begin{equation*}
P_{k}\left(n_{1}, n_{2}, \ldots, n_{r}\right)=(-1)^{r \sum n_{i}} \int_{0}^{\infty}\left\{\prod_{i=1}^{r} L_{n_{i}}(x)\right\}^{k} e^{-x} d x /\left(r \sum n_{i}\right)! \tag{7}
\end{equation*}
$$

This, too, can be estimated asymptotically for large k, and leads to ${ }^{(4)}$

$$
\begin{equation*}
P_{k}\left(n_{1}, n_{2}, \ldots, n_{r}\right)=\exp \left\{-\sum_{i=1}^{r} n_{1}^{2} / \sum_{i=1}^{r} n_{i}\right\}+O\left(\frac{1}{k}\right) \tag{8}
\end{equation*}
$$

So far no combinatorial derivation has been found for this rather surprising result. However, it may be noted that (8) implies the combinatorial result

$$
\begin{equation*}
\left\{P_{k}\left(n_{1}, n_{2}, \ldots, n_{r}\right)\right\}^{\Sigma_{i=1}^{n_{i}}} \sim \prod_{i=1}^{r}\left\{P_{k}\left(n_{i}\right)\right\}^{n_{i}} \tag{9}
\end{equation*}
$$

We conclude with a rather different problem. Again consider k sets $S_{1}, S_{2}, \ldots, S_{k}$ of respective cardinalities $n_{1}, n_{2}, \ldots, n_{k}$, where $X=\bigcup_{r=1}^{k} S_{r}$.

For any permutation π of X we define its shift number $v(\pi)$ as the number of elements of X which are moved by π to a set different from that in which they started. A derangement may thus be defined as a permutation π for which $v(\pi)=\sum_{r=1}^{k} n_{r}$.

We define the function

$$
\begin{equation*}
\Delta\left(n_{1}, n_{2}, \ldots, n_{k}\right)=\sum_{\pi}(-1)^{v(\pi)} \tag{10}
\end{equation*}
$$

where the sum is taken over all permutations of X. It can be deduced from (1), using analytic properties of the Laguerre polynomials, that

$$
\begin{equation*}
\Delta\left(n_{1}, n_{2}, \ldots, n_{k}\right)=2^{\sum n_{r+1}} \int_{0}^{\infty} e^{-2 x}\left\{\prod_{r=1}^{k} L n_{r}(x)\right\} d x \tag{11}
\end{equation*}
$$

On the other hand it has been shown in ref. 2 that, if $k \leqslant 4$, the integral in (11) is always positive. We thus have an analytic proof of the combinatorial result that, for $k \leqslant 4$,

$$
\begin{equation*}
\Delta\left(n_{1}, n_{2}, \ldots, n_{k}\right)>0 \tag{12}
\end{equation*}
$$

Note incidentally that the condition $k \leqslant 4$ is necessary, since already

$$
\begin{equation*}
\Delta(1,1,1,1,1)=-8<0 \tag{13}
\end{equation*}
$$

To close this rather curious circle, we mention that the inequality (12) can be proved by purely combinatorial methods, ${ }^{(5)}$ thus providing a combinatorial proof of the positivity of the integral in (11).

REFERENCES

1. R. Askey, M. Ismail, and T. Rahsed, MRC Technical Report \#1522 (1975).
2. R. Askey and G. Gasper, Am. Math. Month. 79:327 (1972).
3. S. Even and J. Gillis, Math. Proc. Camb. Phil. Soc. 79:135 (1976).
4. J. Gillis, M. Ismail, and T. Offer, SIAM J. Math. Anal. (in press).
5. J. Gillis and D. Zeilberger, Eur. J. Combin. 4:221 (1983).

[^0]: This paper is dedicated to Cyril Domb, in friendship.
 ${ }^{1}$ Department of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel.

